Chemoselective reduction and oxidation of ketones in water through control of the electron transfer pathway

نویسندگان

  • Sun Min Kim
  • Ho Sung Yoo
  • Hideo Hosono
  • Jung Woon Yang
  • Sung Wng Kim
چکیده

The selective synthesis of different products from the same starting materials in water, which is the most abundant solvent in nature, is a crucial issue as it maximizes the utilization of materials. Realizing such reactions for ketones is of considerable importance because numerous organic functionalities can be obtained via nucleophilic addition reactions. Herein, we report chemoselective reduction and oxidation reactions of 1,2-diketones in water, which initiates anionic electron transfer from the inorganic electride [Ca24Al28O64](4+)·4e(-), through controlling the pathway of the electrons to substrates. The generation of different radical species for transient intermediates was the key process required to control the reaction selectivity, which was achieved by reacting the anionic electrons with either diketones or O2, leading to the formation of ketyl dianion and superoxide radicals in the reduction and oxidation reactions, respectively. This methodology that utilizes electrides may provide an alternative to the pulse radiolysis of water in synthetic chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol

Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...

متن کامل

Microwave-Assisted Efficient and Chemoselective Acetalization of Aldehydes with Trimethyl Orthoformate

Efficient and chemoselective protection of aldehydes to the corresponding dimethyl acetals have been carried out by mixture of trimethyl orthoformate and methanol in the presence of a catalytic amount of TMSCl or AlCl3 under microwave irradiation. Under these conditions, acetalization of ketones does not take place and they remain intact under reaction conditions. The results are compared with ...

متن کامل

Dipyridine cobalt chloride as an efficient and chemoselective catalyst for the synthesis of 1,1-diacetates under solvent-free conditions

1,1-Diacetates(acylals) were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2) as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst is solid, stable at high temperatures, soluble in water, stable in air, immiscible in common o...

متن کامل

Selective Radical-Radical Cross-Couplings: Design of a Formal β-Mannich Reaction.

A direct β-coupling of cyclic ketones with imines has been accomplished via the synergistic combination of photoredox catalysis and organocatalysis. Transient β-enaminyl radicals derived from ketones via enamine and oxidative photoredox catalysis readily combine with persistent α-amino radicals in a highly selective hetero radical-radical coupling. This novel pathway to γ-aminoketones is predic...

متن کامل

A chemoselective and green reduction of nitro arenes to aromatic amines with FeSO4, NaBH4, H3PW12O40 in water at room temperature

A new efficient and practical method for the room-temperature reduction of aromatic nitro compounds employing FeSO4. 7H2O, NaBH4, H3PW12O40 system in H2O under mild conditions is reported. The method is simple, inexpensive, easily scaled-up and applicable for the large scale preparation of different substituted anilines.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015